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NATIONAL ADVISORY CCMMITTEE FOR AERONAUTII 

TECHNICAL NOTE 4258 

A NUMERICAL MEZHODFOREVALUATINGWAVE DRAG 

By Maurice S. Cahn and Walter B. Olstad 

A numerical method for evaluating the Von K6rm6n wave-drag equation 
has been developed and applied to the calculation of wave drag for sev- 
eral bodies of revolution. Results indicated good agreement with the 
exact solution. Sufficient accuracy of wave drag was obtained by using 
a sjmple numerical method to determine the second derivatives of the 
area distributions. 

It is concluded that the numerical method will yield results weU. 
within the accuracy of linearized theory. The method may be set up 
easily for a desk calculator or an electronic computer. 

INTRODUCTIOM 

Area-rule concepts (ref. 1) have shown that the wave drag of a 
configuration is related to the wave drag of an equivalent body of 
revolution. As a result, much interest has been directed toward the 
evaluation of the wave drag of bodies of revolution. The most common 
method of approach has been to evaluate the Von K&m&n wave-drag for- 
mula with a Fourier series analysis. This method is outlined in refer- 
ence 2. It would seem that a method of numerically evaluating the double 
integral in the Von K&m&n equation might, in some cases, be more useful 
to the engineer. Such a method is devised and presented in this report. 
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wave-drag coefficient, Wave drsg 
@f 
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index of summation in x - k 

defined by equation (4) 

body length 

free-stream Mach number 

nmiber of terms of summation 

dynamic pressure 

body radius 

body maximum radius of configuration 1 

body cross-sectional area 

body frontal area of configuration 1 

coordinate of longitudinal axis of body 

auxiliary coordinate of longitudinal axis of bcdy 

Primes indicate derivatives with respect to the argument. 

The Von K&m&n wave-drsg equation for a body of revolution as given 
in reference 3 can be presented in the form 

l 

l 

ANAIYSIS 

D 1 -= -- 
9 lr S"(x)S"(~)log(x - t)dg dx (1) 

The integral in equation (1) may be considered as the volume between 
a surface determined by the function S"(x)S"(C)log(x - 6) and .the 
x,k plane. The volume is bounded laterally by the planes lj = 0, x = 2, 
and x=e, as shown in the following sketch: 

i 
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Along any line x - 5 = Constant, the term log(x - 5) is a constant. 
Thus, if the integration proceeds first along this line, the term 
1063(x - 5) may be taken outside of the integral sign. The second 
integration is then performed with respect to (x - k) from 0 to 2. 

From these con$iderations, a numerical solution to equation (1) can 
be somewhat simplified. The x,k plane can be divided into a number of 
finite diagonal strips of equal width, and values of S"(x)&'(e) along 
the center of each strip can be ccmputed. These values then are smed 
along the strips for which x - 5 = Constant and multiplied by the 
value of log(x - g) integrated across the strip. Using the integrated 
value of l-(x - g) over the strip rather than the value of the loga- 
rithm itself' avoids the problem of the singularity on the line x = 5. 
It should be noted here that the sunrmation for the line x = S is 
divided by 2 so that no areas outsfde of the limits of the integration 
sxe included. Finally, the products of the summation along each line 
for which x - 5 = Constant and the integrated value of log(x - 5) 
are 6-d to obtain the solution. This integration is thus described 
by the following expression: 

(2) 
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where q = for the exsmples herein, and 

Lj = [j + $)log(j + $) - (j - $)log(j - $)I + (log t - 1 
!I 

Since S'(0) = S'(2) = 0, 

2 x ss S"(x)S"(~)ds dx 
0 0 

= @I(2) - S'(Ojy = 0 

Therefore the constant term (log $ - 1) in Lj can be eliminated, with 

the result that 

Lj = (3 + $%3(j + $) - (j - $og(j - $) 

When j=O, LO = $ log $. 

(4) 

Equation (4) is independent of both the number and the size of 
increments and can be used whenever S'(0) = S'(2) = 0. Values of the- 
function Lj for j from 0 to 99 are presented in table I. 

When S'(2) is not equal to zero, the term 
retained 
equation 

in Lj, and additional terms must be used with VanK&rm&nfs 
(see ref. 4). These terms are 

must be 

[s'(2v log 2 + s'(2) J2 S'(x)log('l - x)dx 
2s Brb) x 0 

(5) 

The integral in equation (5) can be evaluated with a single numerical 
summation by utilizing the information already obtained in the evalua- 
tion of equation (1). 
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DISCUSSION 

In order to determine the accuracy of this numerical method, the 
wave drag of an analytical body of revolution was computed by this 

5 method, with the f-and ?- axes each divided into 40 equal increments, 

and by analytic integration of Von K&&nrs equation. The shape of 
the analytical body (configuration 1) was given by the following 
expression: 

In order to test the accuracy of the numerical procedure, exact values 
of the second derivative of the srea distrfbution S" were used. The 
value of t2he wave-drag coefficient obtained by the numeric&L method was 
42.648 f 

0 
as compared with the exact value of 42.667 F ', a difference 

0 
of 0.045 percent. A layout of the calculations involved in the numer- 
ical method is presented in table II. 

c 
The wave drag for configuration 1 was also determined numerically 

by using 100 increments. Again, exact values of S" were used. The 
value of the wave-drag coefficient obtained from these calculations was 

I 42.523 F ‘, 0 a difference of 0.337 percent from the exact value. 

In practical applications of the numerical method, the exact values 
of the second derivative of the area distributions would not be avail- 
able. In fact, the exact srea distribution is not generally known. 
Thus, evaluation of the second derivative by various numerical proce- 
dures may lead to considerable error. These errors, in turn, may have 
a lsrge effect on the accuracy of the numerical method for evaluating 
wave drsg. In order to determine this effect, three additional bodies 
of revolution were developed for which the exact values of S" were 
known. These bodies have lsrge variations of curvature of their area 
distributions In order to provide a severe test. Configuration 2 was 

obtained by adding 0.25[1 + cos ~OYC($ - 0.51 for 0.4 s $5 0.6 to 

the nondimensional area distribution of configuration 1 (the psrabolic 
body of revolution described previously). Configuration 3 was obtained 
by subtracting this term frcm the nondimensional area distribution of 
configuration 1. Configuration 4 was obtained by addin@; 
0.25k + COB lO~(f - 0.4)] for 0.3 5 $5 0.7 to the nondimensional 
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area distribution of configuration 1. These area distributions (see 
fig. 1) were plotted to a scale commensurate with the accuracy of the 
srea distribution of a typical wind-tunnel model. Values of the second 
derivatives were then obtained by picking values of area from the curves 
and substituting them into the formula 

s; =: Si-1 - 2% + Si+l 

b/d2 

where n=lOO. A comparison of these approximate values of S" with 
exact values is presented in figure 2 for configuration 3. Values of 
wave-drag coefficient were computed for the four bodies by the numerical 
method (for 100 increments) by using first, the exact values of S", 
and second, the approxtiate values. A comparison of the results is 
shown in the following table: 

Configuration 
CD for - Exact Approximate 

S" S" 

42.523 0 ; 2 42.655 0 f 2 
329.234 0 ; 

2 2 

303.255 0 B 2 
296.848f2 0 

642.438; 0 2 645.949 , 

difference 

0.31 

1.04 

2.12 

-55 

Despite the relatively large errors in some of the individual 
approximate values of S" (see fig. 2), the values of wave-drag coeffi- 
cient computed frcan these values were in close agreement with those com- 
puted from the exact values of S". These results sre not surprising 
when it is considered that the approximate values of S" form a set of 
exact values of the second derivative of an area distribution which 
differs little from the original area distribution. The differences 
between the two srea distributions will be of the ssme order of magni- 
tude as the accuracy to which the original area distribution is known. 
Obviously the wave drag determined by these two area distributions will 
be approximately the same. Any differences will be well within the 
accuracy by which the theory can be expected to apply to a practical 
example. 
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The examples cited in the previous paragraphs indicate that 
100 increments are sufficient to yield good accuracy in the evaluation 
of wave drag. A Urger number of increments might be used for an srea 
distribution which has even more rapid changes in shape than those 
studied herein. However, it should be kept in mind that a body with 
such an area distribution will not permit linearized flow approximation, 
and equation (1) should not be expected to yield good agreement with 
experiment. In fact, if the slope of the srea distribution is discon- 
tinuous, Von K&&n's equation indicates an infinite value for the wave 
drag, which obviously disagrees with experFmenta1 evidence. 

It should be noted that the technique developed herein can be 
readily adapted to the evaluation of the wave drag of lifting configura- 
tions (see ref. 5) and to vortex drag of a lifting surface in subsonic 
or supersonic flow (see ref. 4). 

CONCLUDING REMARKS 

A numerical method has been developed for evaluating Von K&m&'s 
wave-drag equation. The method may be set up-easily for a desk celcu- 
later or an electronic cczaputer and will yield results well within the 
accuracy of linearized theory. A sFmple numerical method was used for 
determining the second derivatives of nonanalytic area distributions 
for four bodies of revolution. Results of calculations made by using 
these approximate derivatives and by using exact derivatives yielded 
differences in wave drag on the order of 2 percent for a practical case. 

The numerical method developed herein can be adapted to the evalua- 
tion of the wave drag of lifting configurations end to the vortex drag 
of a lifting surface In subsonic or supersonic flow. 

Langley Aeronautical Laboratory, 
National Advisory Connnittee for Aeronautics, 

Langley Field, Va., February 28, 1958. 
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!c!mILE I.- VALUES OF THEi FUNCTION LJ 

FOR j FRCMOTOgg 

2 l 0939 2-3837 ;i 
2.6078 
2.796 z: 

2.9451 E 
43 

-0.3470 
.9547 

1.6825 
2 l 0939 

2-3837 
2.6078 
2.796 
2.9451 

;-“1;; 
313022 
3'3975 
3.4846 

;-2$iI: 
3:7080 
3.7724 
3.8331 
3.893 

;-;;;z 
4:0445 
4.ogo9 
4.1355 
4.1779 
4.2189 
4.2579 
4.2958 
4.3322 
4.3674 
4.4010 
4.4342 
4.4656 
4.4963 

3'3975 

3.4846 E 

:; 
3.7724 50 

3.8331 3.893 ;; 

;-;;;z 
4:0445 

z 

4.ogo9 ;z 
4.1355 57 
4.1779 58 
4.2189 
4.2579 z 
4.2958 
4.3322 2 
4.3674 63 
4.4010 64 

4-4342 4.4656 2 
4.4963 67 

4.5265 

t-;z;; 
4:6log 
4.6377 
4.6635 
4.6888 
4.7135 
4.7376 

4.8710 

4.9890 
5.0072 
5.0255 

;*~9” 
510776 
5.0939 
5.1113 

;‘zg 
5:1585 

;=z 
5:x)50 

g 
72 

5.2191 
5.2346 
5.2481 
5.2631 
5.2767 
5.2898 
5.3045 
5.3172 

5.3820 
5.3940 ;-:!g 
5:4304 
5.4431 
5.4537 
5.4664 
5.4770 
5.4890 
5.4997 
5.5109 
5.5218 
5-5323 ;-;;22’ 
515637 ;*:z: 
5:5950 
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.- 
TABLE Il. - SAMPLE CALCULATIONS FOR PARABOLIC BODY OF REVOWTlON 

4 
z 
3i 

- 

i-s 

.oc#: 
- 
.oon 

:z 
.a32 
.cmI 
.wl: 
.003 
.WJ! 

1 

L -. 

: -. 
i -. 
I -. 
I -. 
5 -. 
L -. 
I -. 
I -. 

t :’ 

: : 
.’ 

1 

t -. 

-. 
> -* 
b -. 
5 -. 
9 -. 
4 -. 
, -. 
3 -. 
z . 
, . 
7 . 
; . 

J 
L -. 

I -. ? -. 
1 -. 
3 -. , -. 
I -. I -. 
1 -. 
r . I . / . 
1 . I . 
I . I . 

-. 

1 -. 

, -. 
7 -. 
1 -. 
j -. 
1 -. 
, -. 
I -. 
) -. 
5 . 
I . 
I . 
, . 
I . 
L . 

1 : 
1 . 

1 

L -. 

i -. 
, -. 
i -. 
, -. 

i I: 
, -. 

, .’ 
! .I 
; .f 
/ . 
I . 
I . 
! * 
1 ., 
b ., 
I ., 
I ., 

., 

./ 

j- 
I- 
f- 
I- 
,- 

I: 
/- 

0 

2 I . 

‘T 

. 

c 
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.nm .cAks .og% .w3 .xsg ml4 .33-m .uB1 .ma 

..wl6 .oJs:, .a .uJa .&a .2osg .soo .31&l .3 

..mlf! .ua .osz9 .c632 .u56 2503 .lm .p5a . zr 

-z 

n 

:Z 
I ecm3 --om7-.wl2 -.ccn6-:ca?l 
.aa -.cfq4 -.ow -.obo -Al347 -.w -.c?%l -.mm -.oBo? 
.m7( -.olJs -.c& -.c43 -.&.E -.c#P -.lc4s -.Jz66 -.u* 
:z I:2 y4m -.o%l -.oyls -.Y95 -Am -.lrn -.pP 

.m -se* -- -.lwJ -2’14 -.zs3 -A 
.a# -.c& -.C@ -.O?@ -.l%9 -.1779 -235 -.26i% -.3 2 J 
.wl6 -&332 -mpg -.lJls -.m -.mlk -.84 -.)mB --n79 
.wl7 -.o* -.om -.zsJ -.lpo 422og -.s+m --3322 -.m 
.cKus -.m -as33 -.ulo-.ma -.E%s -.2$&k -.nY -.kan 
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Configuration I 

Configuration 3 

1.6 
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X 
I 

Figure l.- Area d.istributiom for four bodies of revolution. 
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Figure 2.- C!ompci.son of exact and approximate values of the second derivative of the area dis- 
tribution of configuration 3. The solid line indicates the exact values of S". The synibols 
Indicate approximate values of 5". 


